Caltech Division of the Humanities and Social Sciences

On the Cobb–Douglas Production Function

KC Border March 2004

In the 1920s the economist Paul Douglas was working on the problem of relating inputs and output at the national aggregate level. A survey by the National Bureau of Economic Research found that during the decade 1909–1918, the share of output payed to labor was fairly constant at about 74% (see the table in footnote 37 on page 163 of [1]), despite the fact the capital/labor ratio was not constant. He enquired of his friend Charles Cobb, a mathematician, if any particular production function might account for this. This gave birth to the original Cobb–Douglas production function

$$Y = A K^{1/4} L^{3/4},$$

which they propounded in their 1928 paper, "A Theory of Production" [1].

How did they know this was the answer?

Mathematically the problem is this: Assume that the formula Y = F(K, L) governs relationship between output Y, capital K, and labor L. Assume that F is continuously differentiable. For every output price level p, wage rate w, and capital rental rate r, let $K^*(r, w, p)$ and $L^*(r, w, p)$ maximize profit,

$$pF(K,L) - rK - wL.$$

The first order conditions for an interior maximum are

$$pF_K(K^*, L^*) = r \tag{1}$$

$$pF_L(K^*, L^*) = w \tag{2}$$

where F_K denotes the partial derivative of F with respect to its first variable K, and F_L is with respect to L. Assume now that the fraction of output paid to labor is a constant α . For Cobb and Douglas they chose $\alpha = 0.75$. The constancy can be written:

$$(1 - \alpha)pF(K^*, L^*) = rK^*$$
 (3)

$$\alpha pF(K^*, L^*) = wL^* \tag{4}$$

Dividing (1) by (3) gives

$$\frac{1}{K^*} = \frac{F_K(K^*, L^*)}{(1 - \alpha)F(K^*, L^*)}.$$
(5)

We now use the chain rule to notice that $\frac{d}{dx} \ln(f(x)) = \frac{f'(x)}{f(x)}$ for any function f. This allows us to rewrite (5) as

$$\frac{\partial}{\partial K}\ln F = \frac{F_K}{F} = \frac{1-\alpha}{K^*}.$$
(6)

Similarly

$$\frac{\partial}{\partial L}\ln F = \frac{\alpha}{L^*}.\tag{7}$$

Thus we have eliminated p, r, and w. So the above equations hold for every (K^*, L^*) that can result as a profit maximum. If this is all of \mathbf{R}^2_+ , then we may treat (6)–(7) as a system of partial differential equations that even I can solve. Since $\int \frac{1}{x} = \ln(x) + c$, where c is a constant of integration, we have

$$\ln F(K,L) = (1 - \alpha) \ln K + g(L) + c, \tag{6'}$$

where g(L) is a constant of integration that may depend on L; and

$$\ln F(K,L) = \alpha \ln L + h(K) + c', \qquad (7')$$

where h(K) is a constant of integration that may depend on K. Combining these pins down g(L) and h(K), namely,

$$\ln F(K, L) = (1 - \alpha) \ln K + \alpha \ln L + C$$

or, exponentiating both sides and letting $A = e^C$,

$$F(K,L) = AK^{1-\alpha}L^{\alpha}.$$

References

[1] Cobb, C. W. and P. H. Douglas. 1928. A theory of production. *American Economic Review* 18(1):139–165. Supplement, Papers and Proceedings of the Fortieth Annual Meeting of the American Economic Association.