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In the 1920s the economist Paul Douglas was working on the problem
of relating inputs and output at the national aggregate level. A survey by
the National Bureau of Economic Research found that during the decade
1909–1918, the share of output payed to labor was fairly constant at about
74% (see the table in footnote 37 on page 163 of [1]), despite the fact the
capital/labor ratio was not constant. He enquired of his friend Charles Cobb,
a mathematician, if any particular production function might account for
this. This gave birth to the original Cobb–Douglas production function

Y = A K1/4L3/4,

which they propounded in their 1928 paper, “A Theory of Production” [1].
How did they know this was the answer?
Mathematically the problem is this: Assume that the formula Y =

F (K, L) governs relationship between output Y , capital K, and labor L.
Assume that F is continuously differentiable. For every output price level p,
wage rate w, and capital rental rate r, let K∗(r, w, p) and L∗(r, w, p) maxi-
mize profit,

pF (K, L) − rK − wL.

The first order conditions for an interior maximum are

pFK(K∗, L∗) = r (1)

pFL(K∗, L∗) = w (2)
where FK denotes the partial derivative of F with respect to its first variable
K, and FL is with respect to L. Assume now that the fraction of output paid
to labor is a constant α. For Cobb and Douglas they chose α = 0.75. The
constancy can be written:

(1 − α)pF (K∗, L∗) = rK∗ (3)
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αpF (K∗, L∗) = wL∗ (4)
Dividing (1) by (3) gives

1
K∗ = FK(K∗, L∗)

(1 − α)F (K∗, L∗)
. (5)

We now use the chain rule to notice that d
dx

ln
(
f(x)

)
= f ′(x)

f(x) for any function
f . This allows us to rewrite (5) as

∂

∂K
ln F = FK

F
= 1 − α

K∗ . (6)

Similarly
∂

∂L
ln F = α

L∗ . (7)

Thus we have eliminated p, r, and w. So the above equations hold for every
(K∗, L∗) that can result as a profit maximum. If this is all of R2

+, then we
may treat (6)–(7) as a system of partial differential equations that even I can
solve. Since

∫ 1
x

= ln(x) + c, where c is a constant of integration, we have

ln F (K, L) = (1 − α) ln K + g(L) + c, (6′)

where g(L) is a constant of integration that may depend on L; and

ln F (K, L) = α ln L + h(K) + c′, (7′)

where h(K) is a constant of integration that may depend on K. Combining
these pins down g(L) and h(K), namely,

ln F (K, L) = (1 − α) ln K + α ln L + C

or, exponentiating both sides and letting A = eC ,

F (K, L) = AK1−αLα.
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